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The theory of domain states is reviewed as a prerequisite for consideration of

tensorial distinction of domain states. It is then shown that the parameters of the

first domain in a ferroic phase transition from a set of isomorphic groups of the

same oriented Laue class can be systematically and suitably represented in terms

of typical variables. On replacing these variables by actual tensor components

according to the previous paper [Kopský (2006), Acta Cryst. A62, 47–64], we can

reveal the tensorial parameters associated with each particular symmetry

descent. Parameters are distinguished by the ireps to which they belong and this

can be used to determine which of them are the principal parameters that

distinguish all domain states, in contrast to secondary parameters which are

common to several domain states. In general, the parameters are expressed as

the covariant components of the tensors. A general procedure is described

which is designed to transform the results to Cartesian components. It consists of

two parts: the first, called the labelling of covariants, and its inverse, called the

conversion equations. Transformation of parameters from the first domain state

to other states is now reduced to irreducible subspaces whose maximal

dimension is three in contrast with higher dimensions of tensor spaces. With this

method, we can explicitly calculate tensor parameters for all domain states. To

find the distinction of pairs of domain states, it is suitable to use the concept of

the twinning group which is briefly described.

1. Ferroic phase transitions

The structure of a crystal depends frequently on external

isotropic conditions, which means the temperature T and the

isotropic (hydrostatic) pressure p. For example, the structure

of ice is described by a phase diagram which contains regions

of ðT; pÞ corresponding to 11 different structures. When the

external conditions change across the border between two

phases in the diagram, the structure also changes. This

phenomenon is called a structural phase transition and it is

based on the model introduced by Landau (see collection of

papers by Landau, 1937). This model assumes a certain kind of

instability which causes the atoms to change their positions.

The change of temperature and pressure always leads to

changes of the structure – the lattice parameters and distances

between atoms change within certain limits without a change

of the structure type and hence without a change of the space-

group-symmetry type. A structural phase transition caused by

such displacements of atoms due to a change in symmetry are

called displacive. The physical cause of the transition is a

certain mode, whose eigenfrequency tends to zero on crossing

a certain line of the ðT; pÞ diagram. This mode is called a soft

mode and we used to say that this mode freezes, causing

permanent distortions and a change of symmetry.

The importance of the theory of group representations in

various descriptions of this phenomenon was realized early on

by Landau although he was evidently not aware of the state of

the art of group theory in 1937; he used his own term races of

functions for the bases of irreducible representations. One of

the best descriptions of group-theoretical considerations of

structural phase transitions is given by Lyubarskii (1960); the

use of density functions is more general than the usual model

of displacive transitions. The components of distortions which

cause the transition are called the transition parameter; the

alternative name soft mode reflects the physical origin of the

transition. The eigenenergy of this mode tends to zero as the

isotropic conditions approach the transition point. The onset

of this parameter may induce the onset of other changes

described as secondary (improper, faint) parameters.

By ferroic phase transitions, we understand transitions in

which the point symmetry of the crystal changes. This occurs in

the majority of cases but there also exist transitions to



equiclass subgroups in which the point symmetry does not

change. Since the point symmetry decreases in ferroic transi-

tions, the transitions are accompanied by an onset of tensor

properties which were originally disallowed. The symmetry

group G of the original phase is called the parent group, the

symmetry Fi of the ferroic phase its ferroic subgroup. We shall

talk about the symmetry descent G + fFig which characterizes

the ferroic transition and our concern will be the qualitative

change of tensor properties. However, neither the symmetry

nor the newly acquired tensor properties are defined uniquely.

If the ferroic group Fi is not a normal subgroup, then its

conjugate subgroups are equivalent and any of them may

appear as the resulting symmetry. This shows that there does

not exist just one specific ferroic state but a set of equivalent

ferroic states. The crystal may therefore adopt one of these

states but it may also happen that different states correspond

to different regions of a crystal. Such regions are called ferroic

domains and the states are called ferroic domain states. From

now on we shall drop the adjective ferroic. The equivalence of

domain states means that they have the same properties with

reference to different Cartesian systems so that these prop-

erties manifest themselves in different ways with reference to

a common Cartesian system of coordinates. A clear theory of

domain states has been introduced by Janovec (1972), and

been refined by Kopský (1982a,b,c,d).

The existence of domains has an important influence on the

final properties of the crystal which is now being utilized in the

developing technique of domain engineering. A multidomain

sample may be considered as a special case of a polycrystalline

state. In both cases, the sample consists of regions of the same

structure oriented in different ways with reference to a

common Cartesian coordinate system. However, the grains of

a polycrystal may be oriented in a rather arbitrary manner

while the possible mutual orientations of domains in a

multidomain sample are subject to strict rules of the theory of

domain states. There are two ways in which the domains affect

the resulting properties of a multidomain structure: (i) the

volume and spatial arrangement of domains; (ii) the domain

walls in which the properties change from one state to

another.

It is therefore of interest to develop methods for the

calculation of the properties of individual domain states and

for comparison of these properties in adjoining domains. The

latter is usually called the tensorial distinction of domain states.

The standard technique of the characters of ireps allows one to

calculate the numbers of tensor components in which domain

states differ (Janovec et al., 1992, 1993, 1994, 1995). Our

concern is to describe a group-theoretical technique for the

calculation of explicit tensor properties of individual domains.

This calls for the introduction of some useful concepts.

2. Stability spaces, strata and epikernels

Stability spaces: Anticipating the use of group-theoretical

concepts for the description of domain states in ferroic tran-

sitions, we first explain the relationship between subgroups

and carrier spaces of ireps of the original parent group G. Let

us consider a tensor space VðAÞ. It contains subspaces VðAÞðGÞ

and VðAÞðfFigÞ of tensors which are invariant under the groups

G and Fi, respectively. Such spaces are called the stability

spaces of groups G and Fi. The subspace VðAÞðGÞ is described

by tensorial invariants of the group G, while the comple-

mentary subspace is defined by components of tensorial

D
ð�Þ
R ðGÞ covariants. In considering the symmetry descent

G + fFig, we have to find those covariant components that

became invariant under the action of ferroic groups Fi.

Although generally there may exist no such components for a

given tensor A, there always exist tensors for which such

covariant components exist and hence the stability spaces

V ðAÞðFiÞ always contain the stability space VðAÞðGÞ and, for

some tensors, these subspaces are proper subspaces. From the

set of conjugate subgroups fFig, we choose one subgroup F1;

the stability space of a conjugate subgroup Fi ¼ giF1g�1
i is

related to the stability space VðAÞðF1Þ by VðAÞðFiÞ ¼ giV
ðAÞðF1Þ.

To avoid the necessity of calculation of these spaces for each

particular tensor, we use the approach via typical variables

and typical carrier spaces. The natural choice of matrix ireps

and standard variables for groups of the same oriented Laue

class, described in Kopský (2006b, hereafter referred to as

paper 1), proves also to be the most intelligent and effective.

The typical carrier space VoðGÞ ¼ ��V�ðGÞ of the parent

group G is defined as a direct sum of carrier spaces V�ðGÞ of

R-ireps of the group G with bases fe�;1; e�;2; . . . ; e�;d�g. All

invariants of the group G are represented by a single vector e1

or by a single variable x1. All Dð�ÞðGÞ covariants are repre-

sented by a typical Dð�ÞðGÞ covariant ðx�;1; x�;2; . . . ; x�;d� Þ.

Let us now consider a subgroup F1 of the group G which is

potentially the symmetry of some ferroic state. To this

subgroup there corresponds a subspace VoðF1Þ ¼ ��V�ðF1Þ of

the typical space Vo which contains all those vectors of Vo

which are invariant under the action of the subgroup F1. This

space is called the typical stability space of the subgroup F1,

while individual V�ðF1Þ are the typical stability spaces of F1 in

the carrier spaces V�ðGÞ of individual ireps of the group G.

Expressing the stability spaces in terms of standard variables,

we obtain the set of invariants of the group F1 expressed as

linear combinations of these variables. Comparing them with

tensorial covariants, we obtain immediately those linear

combinations of tensor components that onset at the phase

transition from the parent group G to the ferroic subgroup F1.

More than that, we can also identify the ireps of the parent

group G to which the onsetting parameters belong. Here we

simply use the fact that subspaces VðAÞ�a ðGÞ behave under the

action of the group G like copies of the typical spaces V�ðGÞ.

Stabilizers and orbits: Let us now consider the action of the

group G on a set S. The elements of S are called points and

are denoted by S. The action of G assigns to each element

g 2 G and to each point S 2 S a point gS 2 S. Let us pick up

a certain point S. Some elements f 2 G may leave the point S
invariant, so that fS ¼ S. It is easy to show that all elements of

G that leave the point invariant must constitute a group, which

is called the stabilizer of the point S under the action of G.

We denote this group by F1 and the point by S1. Performing

coset resolution,
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G ¼ F1 [ g2F1 [ . . . [ gpF1;

we can see that all elements of the coset giF1 send the point S1

to the same point Si ¼ giF1S1 ¼ giS1. The set of points Si is

called the orbit. If we pick up any point Si of the orbit and

apply an element of the group G to it, we obtain another point

of the orbit. Indeed, gSi ¼ ggiS1 ¼ gjS1 ¼ Sj. The stabilizer

of a point Si is a group Fi ¼ giF1g�1
i conjugate to the group F1.

We consider now the first normalizer N
ð1Þ
G ðF1Þ of the subgroup

F1 in G. From coset resolutions

G ¼ N
ð1Þ
G ðF1Þ [ t2N

ð1Þ
G ðF1Þ [ . . . [ tqN

ð1Þ
G ðF1Þ

and

N
ð1Þ
G ðF1Þ ¼ F1 [ s2F1 [ . . . [ srF1;

we obtain

G ¼ F1 [ s2F1 [ . . . srF1[

t2F1 [ t2s2F1 [ . . . t2srF1[

..

.

tqF1 [ tqs2F1 [ . . . tqsrF1:

Changing the indexing of points, starting with S1 ! S11,

through Sij ¼ tisjS1, we obtain that the orbit splits into q

subsets labelled by indices from the set i ¼ 1; 2; . . . ; q and

each of these subsets contains r points Sij with fixed index i

and j ¼ 1; 2; . . . ; r. The points with the same i have the same

stabilizer Fi ¼ giF1g�1
i . The numbers q and r are indices of

subgroups q ¼ ½G : N
ð1Þ
G ðF1Þ�, r ¼ ½N

ð1Þ
G ðF1Þ : F1� and

p ¼ qr ¼ ½G : F1�.

If the set S is the space V of tensors, then the states Sij are

described by tensors xij in this space. These tensors then

characterize the individual domain states. It is suitable to use

the typical spaces and variables for the description of these

states.

Linear orbits and strata: If the set S on which the group G

acts is a linear space VðnÞ, then the elements are vectors

x 2 VðnÞ. If F1 is the stabilizer of a vector x11 2 VðnÞ then,

using the same coset resolution as in the case of the set S, we

obtain an orbit of vectors xij ¼ tisjx11 for which we use the

name linear orbit. Since linear spaces are sets with some

special properties, we can expect that linear orbits will also

have some properties, characteristic of the linear action of the

group G. Indeed, if vector x11 generates an orbit of vectors xij,

then every vector ax11, a 6¼ 0, generates an orbit of vectors axij.

From this we can get the wrong impression that vectors with

the same stabilizer F1 form linear spaces. This, however, is not

true, as we can already see by considering the trivial vector

x ¼ 0 which belongs to every linear space and generates an

orbit with one vector – itself. Also, if linearly independent

vectors x and y have the same stabilizer F1, then the stabilizer

of their linear combination axþ by certainly contains F1 but is

not necessarily identical with it.

This means that, while all vectors of the stability space

VðF1Þ are by definition invariant under the group F1, the group

F1 is not necessarily the stabilizer of an arbitrary vector from

VðF1Þ. The set of all vectors of VðnÞ that have F1 as stabilizer

will be called here the stratum of F1 in VðnÞ. The stratum of F1

in a certain space VðnÞ can be empty. If it is not, then we find it

as follows. We consider the stability space VðF1Þ. This is never

empty as it contains at least the trivial vector x ¼ 0. If the

stability space is nontrivial, it is at least of dimension 1. The

stratum is then the set of all vectors of VðF1Þ with the

exception of the trivial vector. If the stability space is of higher

dimension, it may contain subspaces, which are stability spaces

of supergroups of F1. To get the stratum, we have to take all

these stability spaces out of the space VðF1Þ. Since these

subspaces are of lower dimensions than VðF1Þ, the stratum of

F1 in VðF1Þ is always a dense subset of VðF1Þ. We shall use the

more customary expression that vector x is a general vector of

the stability space VðF1Þ as this expression is more usual in the

literature. Indeed, the vectors that do not belong to the

stratum can be considered as vectors of special symmetry.

Remark. This definition of stratum is different from its use in

the mathematical literature where Stratum is defined as a

collection of orbits of the same type. This Stratum is therefore

the union of strata as defined here for the set of conjugate

subgroups and it coincides with our concept of strata for a

normal subgroup. If it is necessary to use both concepts, we

suggest the use of a capital S as the symbol for the original

Stratum.

Kernels and epikernels: Let us now replace the set S by a

typical carrier space V�ðGÞ. If the corresponding R-irep ��ðGÞ
is one-dimensional, Ker ��ðGÞ ¼ H�, then the space V�ðGÞ

contains only two types of orbits:

(i) the trivial vector xð�Þ ¼ 0, whose stabilizer under the

action of G is the group G itself;

(ii) if xð�Þ ¼ x�eð�Þ, then the stabilizer of this vector is the

halving subgroup H�, and, from coset resolution

G ¼ H� [ g2H�, we obtain the second vector of the orbit

which is g2xð�Þ ¼ �xð�Þ.

Notice that the set of all vectors with stabilizer H� is the whole

space V�ðGÞ with the exception of the trivial vector. This set is

the stratum of H�.

If the dimension of the R-irep is at least two, we have to

analyse the structure of the space V�ðGÞ as follows.

(i) The stabilizer of the trivial vector xð�Þ ¼ 0 is again the

group G itself.

(ii) The stabilizer of any other vector xð�Þ is at least the

group H� ¼ Ker D
ð�Þ
R ðGÞ. The index of H� is now higher than

two and we find the orbit in the usual manner. If every vector

of the space has this group for its stabilizer, then we take the

trivial vector out and get the typical stratum of H� in V�ðGÞ.

The stratum of the group G always consists of the space V1ðGÞ

of its invariants, the stratum of G in V�ðGÞ, � 6¼ 1, contains

only the trivial vector. In no other cases is the stratum a space.

(iii) There may, however, exist vectors of the space V�ðGÞ,

the stabilizers of which are greater than H�. Let us assume that

such a vector x
ð�Þ
1 exists. The stabilizer of this vector is called an

epikernel of the R-irep D
ð�Þ
R ðGÞ and we denote it by F�1. This

group cannot be normal in G because normal subgroups leave

invariant either all vectors or only the trivial vector in each of
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the spaces V�ðGÞ. Epikernels therefore appear as sets of

conjugate subgroups.

The stability space V�ðF�1Þ is of the dimension s�ðF�1Þ< d�.

If s�ðF�1Þ> 1, which may happen only if d� > 2, there may exist

vectors of V�ðF�1Þ, the stabilizer of which is greater than F�1.

The dimension of the stability space of this stabilizer is smaller

than s�ðF�1Þ.

The structure of the space V�ðGÞ can therefore be described

as follows. A general vector of this space has the stabilizer

H� ¼ Ker��ðGÞ. All vectors with exactly this stabilizer form

the stratum of the group H�. This will be obtained if the trivial

vector and vectors of stability spaces of epikernels are

excluded from the space V�ðGÞ.

Epikernels appear as sets of conjugate subgroups F
ðuÞ
�i ,

where the superscript u labels different sets of conjugate

subgroups and the index i labels subgroups of the set. The

intersections core F ðuÞ� ¼
T

i F
ðuÞ
�i ¼ H� of all conjugate

epikernels always result in the kernel. If one epikernel F
ðvÞ
�1 is a

subgroup of another epikernel F
ðuÞ
�1 , then the stability space

V�ðF
ðuÞ
�1 Þ is a subspace of the stability space V�ðF

ðvÞ
�1 Þ. The

stratum of each epikernel is therefore obtained by excluding

from its stability space the trivial vector and stability spaces of

all epikernels which are supergroups of this epikernel.

In Tables 1 and 2 are presented typical stability spaces of

subgroups of tetragonal point groups of the oriented Laue

class D4z � 4z2x2xy and epikernels of their ireps; Table 1

applies to those parent groups which are isomorphic to the

group D4z � 4z2x2xy, Table 2 applies to the centrosymmetric

group D4hz � 4z=mzmxmxy. As a result of our choice of ireps

and standard variables, it is easy to extend these results to all

groups of the oriented Laue class D4z � 4z2x2xy with the

exception of the paramagnetic centrosymmetric group

D04hz � 4z=mzmxmxy:1
0, which must be considered separately.

The word typical means that the information is given in

terms of typical variables which can always be replaced by

corresponding tensor components by the use of tables of

tensorial covariants. In the two tables, we list the subgroups by

both Schoenflies and Hermann–Mauguin symbols and in the

right-hand column we record the corresponding stability

spaces for these subgroups. If the vector in this column is

framed, then the subgroup is an epikernel of that irep to

whose space the tensor belongs. Notice that we can present

this information in one table for the four isomorphic groups

not only because of their isomorphisms but also due to our

standard choice of representations and typical variables.

The framed variables correspond to primary tensor par-

ameters. These are defined as those parameters whose onset is

the cause of the symmetry descent. The other parameters in

the same line are then the consequence of this symmetry

descent and we call them the secondary tensor parameters.

Some subgroups are not epikernels of any of the ireps, so that

no variable is framed. Such a symmetry descent needs tensor

parameters from more than one irep and we can find which

parameters if we look up the groups which are epikernels and

whose intersection is the considered group. This boils down to

a statement that each subgroup is either itself an epikernel or

an intersection of epikernels.1 The difference between stability

spaces and strata in these tables is simple. The typical variables

must not be zero for a stratum while stability spaces also

include vectors for which these variables vanish. The use of

these tables is described below.

A philosophical digression: In connection with these tables,

we may question the validity of the famous statement by Curie

(1884a, p. 400, 1884b): ‘C’est la dissymétrie qui crée le

phénomène’ (‘dissymmetry creates the phenomenon’). From

our consideration it seems more appropriate to say that the

principal tensor parameters create (are responsible for) the

symmetry descent or, in other words, are the cause of the

descent. Though the secondary parameters may seem to be the

consequence of the descent, it seems again more appropriate

to explain their onset as a consequence of faint interaction

(Kopský, 1979).
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Table 1
The typical stability spaces and epikernels of R-ireps for tetragonal groups isomorphic with D4z � 4z2x2xy.

Parent group

D4z C4vz D2dz
bDD2dz

4z2x2xy 4zmxmxy
�44z2xmxy

�44zmx2xy Stability space

C4z 4z C4z 4z S4z
�44z S4z

�44z
x2

D2 2x2y2z C2vz mxmy2z D2 2x2y2z C2vz mxmy2z
x3

bDD2z 2x�yy2xy2z
bCC2vz mx�yymxy2z

bCC2vz mx�yymxy2z
bDD2z 2x�yy2xy2z

x4

C2z 112z C2z 112z C2z 112z C2z 112z x2, x3, x4

C2x 2x11 Csx mx11 C2x 2x11 Csx mx11 x3, ðx1; 0Þ

C2y 12y1 Csy 1my1 C2y 12y1 Csy 1my1 x3, ð0; x1Þ

C2xy 12xy1 Csxy 1mxy1 Csxy 1mxy1 C2xy 12xy11 x4, ðx1; x1Þ

C2x�yy 2x�yy11 Csx�yy mx�yy11 Csx�yy mx�yy11 C2x�yy 2x�yy11 x4, ðx1;�x1Þ

C1 1 C1 1 C1 1 C1 1 x2, x3, x4, ðx1; y1Þ

1 Analogous tables for other oriented Laue classes are available from the
IUCr electronic archives (Reference: XO5008). Services for accessing these
data are described at the back of the journal.



Remark. We consider it appropriate to make the following

remark of historical and terminological character. Ascher

(1977) introduced the term epikernel [see also Kobayashi &

Ascher (1977)] in connection with his study of the direct and

inverse Landau problem and invented the Ker-core criterion,

according to which the groups Fi are epikernels of an irep of

the class ��ðGÞ if and only if core fFig ¼
T

i Fi ¼

H� ¼ Ker��ðGÞ. This criterion is more comfortable than the

subduction (Birman, 1966) and chain subduction criteria (Jarič,

1981). Unfortunately, the terms little group or isotropy group

crept into the literature instead of epikernel. In our opinion,

this is taking jargon too far. A little linguistic analysis seems to

be not out of place here. The older terms little group or

isotropy group are now frequently replaced by the term

stabilizer. The term was introduced in connection with the

group action on any set. The stabilizer of a point of the set is

then that subgroup which contains all those elements of the

group which leave the point invariant. In this sense, an

epikernel of an irep D
ð�Þ
R ðGÞ is a stabilizer (little group or

isotropy group) of a certain vector of the carrier space V�

under the action of the group G (it is by no means the stabi-

lizer of its irep). In addition, the term little group (isotropy

group) of an irep has its own meaning in the theory of

representations of space groups, which is quite a different

story.

3. Exomorphic symmetry descents

Let us consider two symmetry descents: G + F1 and eGG + eFF1.

First we construct the intersections H ¼ core Fi ¼
T

i Fi and
eHH ¼ coreeFFi ¼

T
i
eFFi which are normal subgroups of G and eGG,

respectively. If the factor groups G=H and eGG=eHH are

isomorphic, then there exist homomorphisms � and e��, with

kernels Ker � ¼ H, Kere�� ¼ eHH which map the groups G and eGG
onto the same group H ¼ �ðGÞ ¼ e��ðeGGÞ. If these homo-

morphisms also map the groups F1 and eFF1 onto the same

subgroup F 1 ¼ �ðF1Þ ¼ e��ðeFF1Þ, then we say that the symmetry

descents (group–subgroup relations) G + F1 and eGG + eFF1 are

exomorphic or of the same exomorphic type. The following is a

diagram of exomorphic relations.

The exomorphism of symmetry descents has powerful

consequences.

(i) There exists a one-to-one mapping of ireps � !e�� of G

and eGG engendered by ireps of the factor group H. There also

exists a one-to-one mapping of cosets giF1 !eggi
eFFi such that

elements of these cosets act in the same way on spaces of

engendered ireps. Indeed, both cosets act in the same way as

the element �i of the factor group H.

(ii) From this it follows that the stability spaces, strata and

typical orbits have identical structures.

(iii) In addition, all polynomials in variables which belong to

engendered ireps have the same transformation properties

under the action of elements of corresponding cosets.
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Table 2
The typical stability spaces and epikernels of R-ireps for the group
D4hz � 4z=mzmxmxy.

C4hz 4z=mz
xþ2

D2h mxmymz
xþ3

bDD2hz mx�yymxymz
xþ4

D4z 4z2x2xy
x�1

C4vz 4zmxmxy
x�2

D2dz
�44z2xmxy

x�3

bDD2dz
�44zmx2xy

x�4

C2hz 112z=mz xþ2 , xþ3 , xþ4

C4z 4z xþ2 , x�1 , x�2

D2 2x2y2z xþ3 , x�1 , x�3

bDD2z 2x�yy2xy2z xþ4 , x�1 , x�4

S4z
�44z xþ2 , x�3 , x�4

C2vz mxmy2z x�2 , xþ3 , x�4

bCC2vz mx�yymxy2z x�2 , x�3 , xþ4

C2z 112z xþ2 , xþ3 , xþ4 , x�1 , x�2 , x�3 , x�4

C2hx 2x=mx11 xþ3 , ðx
þ
1 ; 0Þ

C2hy 12y=my1 xþ3 , ð0; xþ1 Þ

C2hxy 12xy=mxy1 xþ4 , ðx
þ
1 ; xþ1 Þ

C2hx�yy 2x�yy=mx�yy11 xþ4 , ðx
þ
1 ;�xþ1 Þ

Ci
�11 xþ2 , xþ3 , xþ4 , ðx

þ
1 ; yþ1 Þ

C2vx 2xmymz xþ3 , ðx
�
1 ; 0Þ

C2vy mx2ymz xþ3 , ð0; x�1 Þ

C2vxy mx�yy2xymz xþ4 , ðx
�
1 ; x�1 Þ

C2vx�yy 2x�yymxymz xþ4 , ðx
�
1 ;�x�1 Þ

Csz 11mz xþ2 , xþ3 , xþ4 , ðx
�
1 ; y�1 Þ

C2x 2x11 xþ3 , x�1 , x�3 , ðxþ1 ; 0Þ, ðx�1 ; 0Þ
C2y 12y1 xþ3 , x�1 , x�3 , ð0; xþ1 Þ, ð0; x�1 Þ

C2xy 12xy1 xþ4 , x�1 , x�4 , ðxþ1 ; xþ1 Þ, ðx
�
1 ; x�1 Þ

C2x�yy 2x�yy11 xþ4 , x�1 , x�4 , ðxþ1 ;�xþ1 Þ, ðx
�
1 ;�x�1 Þ

Csx mx11 xþ3 , x�2 , x�4 , ðxþ1 ; 0Þ, ð0; x�1 Þ
Csy 1my1 xþ3 , x�2 , x�4 , ð0; xþ1 Þ, ðx

�
1 ; 0Þ

Csxy 1mxy1 xþ4 , x�2 , x�3 , ðxþ1 ; xþ1 Þ, ðx
�
1 ;�x�1 Þ

Csx�yy mx�yy11 xþ4 , x�2 , x�3 , ðxþ1 ;�xþ1 Þ, ðx
�
1 ; x�1 Þ

C1 112z xþ2 , xþ3 , xþ4 , x�1 , x�2 , x�3 , x�4 , ðxþ1 ; yþ1 Þ, ðx
�
1 ; y�1 Þ



The concept was originally introduced by Kopský (1978) for

equitranslational phase transitions. In this context, we can say

that the consideration of two exomorphic transitions is based

on the same algebraic relations. In view of this, the classifi-

cation of symmetry descents into exomorphic types facilitates

systematic investigation. Thus in terms of crystallographic

point groups we find 44 exomorphic types. Among them we

find 28 cases when the subgroup is an epikernel of some irep,

and in 5 cases out of this the subgroup is simultaneously an

epikernel of two ireps. The number of distinct descents within

classical crystallographic point groups is 212, within magnetic

crystallographic point groups it goes up to 1599. In terms of

equitranslational symmetry descents between ordinary or

magnetic space groups, this number will go up into the thou-

sands. The generalization of the concept is rather straightfor-

ward (Litvin et al., 1986).

Remark. The permutation representation of the group G on

cosets of the subgroup F1 has also been used for derivation of

colour groups. A later attempt to rename exomorphism as

chromomorphism and a rather brutal attempt to change the

usual terminology on the grounds of this fact belongs to the

folklore of applications of group theory.

4. The fine structure of a typical linear orbit

We now consider again the typical stability space VoðF1Þ of a

subgroup F1 of the group G. This space is a direct sum of the

stability spaces V�ðF1Þ of the group F1 in the individual typical

carrier spaces V�. We denote by F�1 the stabilizer of a general

vector x
ð�Þ
11 2 V�ðF1Þ. The stability space V�ðF1Þ is identical

with the stability space V�ðF�1Þ and all stabilizers F�1 contain

the group F1. We perform the coset resolution

G ¼ F�1 [ g
ð�Þ
2 F�1 [ . . . [ gð�Þp�

F�1

and the more detailed

G ¼ N
ð1Þ
G ðF�1Þ [ t

ð�Þ
2 N

ð1Þ
G ðF�1Þ [ . . . [ tð�Þq�

N
ð1Þ
G ðF�1Þ

and

N
ð1Þ
G ðF�1Þ ¼ F�1 [ s

ð�Þ
2 F�1 [ . . . [ sð�Þr�

F�1

which combine into

G ¼ F�1 [ s
ð�Þ
2 F�1 [ . . . sð�Þr�

F�1[

t
ð�Þ
2 F�1 [ t

ð�Þ
2 s
ð�Þ
2 F�1 [ . . . t

ð�Þ
2 sð�Þr�

F�1[

..

.

tð�Þq�
F�1 [ tð�Þq�

s
ð�Þ
2 F�1 [ . . . tð�Þq�

sð�Þr�
F�1

to obtain the orbit of vector x
ð�Þ
11 2 V�ðF�1Þ ¼ V�ðF1Þ. This

orbit contains p� ¼ q�r� vectors x
ð�Þ
ij ¼ t

ð�Þ
i s
ð�Þ
j x
ð�Þ
11 2 V�ðF�iÞ

and splits into q� subsets labelled by indices from the set

i ¼ 1; 2; . . . ; q� and each of these subsets contains r� vectors

x
ð�Þ
ij with fixed index i and index j ¼ 1; 2; . . . ; r�. The vectors

with the same i have the same stabilizer F�i ¼ g
ð�Þ
i F�1g

ð�Þ�1
i .

The numbers q� and r� are indices of subgroups:

q� ¼ ½G : N
ð1Þ
G ðF�1Þ�, r� ¼ ½N

ð1Þ
G ðF�1Þ : F�1� and p� ¼ q�r� ¼

½G : F�1�.

A vector x11 of the typical stability space VoðF1Þ of the

subgroup F1 generates an orbit of p ¼ qr vectors xij ¼ tisjx11

with stabilizers Fi, where p ¼ ½G : F1� ¼ qr, where

q ¼ ½G : N
ð1Þ
G ðF1Þ� and r ¼ ½N

ð1Þ
G ðF1Þ : F1�. This vector splits

into components xð�Þ11 in the typical irreducible subspaces V�.

Each of these components has its own stabilizer F�1 � F1.

Vectors xij ¼ tisjx11 of the orbit also split into components x
ð�Þ
ij .

While all vectors xij of the typical orbit are distinct, the

components x
ð�Þ
ij are also distinct only if F�1 ¼ F1. Notice that

this means that these components are distinct only if F1 is an

epikernel of the irep D
ð�Þ
R ðGÞ. On the other hand, if F�1 � F1,

the number p� of distinct components is a divisor of the total

number p of vectors of the orbit; it is p : p� ¼ ½F�1 : F1�.

If we label the components x
ð�Þ
ij by the original labels ij, then

certain groups of these labels denote the same component. To

label them uniquely, we use the coset resolutions associated

with the stabilizer F�1 which results in a certain unique

labelling x
ð�Þ
i� j�

. Each label i�j� then corresponds to k� ¼ p : p�
labels ij. The set of vectors

xij ¼ ð. . . ; x
ð�Þ
i�j�
; . . . ; x

ð�Þ
i� j�
; . . .Þ

will be called the typical linear orbit and its representation in

terms of components in irreducible typical subspaces will be

referred to as the fine structure of the typical linear orbit.

Tables of these (under the less precise name fine domain

structures and with different symbols of variables) were

published a long time ago (Kopský, 1982a). The original

classification of symmetry descents into exomorphic classes

given in this work is used below in the examples.

In Table 3 are shown fine structures of typical orbits for a

few of the symmetry descents from a particular parent group.

The advantage of typical variables is clear if we recall that

tables of tensorial covariants assign to each of these variables

all covariant tensor components up to fourth order (and if

extension to higher orders is necessary, we know how to find

it).

To attempt a more precise terminology would be appro-

priate at this point to connect the abstract picture provided by

group theory with real physical situations and also with their

models. Formation of domains at structural phase transitions is

a physically established and observed fact (actually, the

concept of domains appears for the first time in connection

with the theory of ferromagnetic materials where group theory

is dwarfed, while demagnetization fields play the main role).

Quite generally, a physical observation of a symmetry descent

from the state S of parent symmetry G to some state S1 of low

symmetry F 1 implies that the state of the system may, in the

absence of special external conditions, change equally likely to

any of the states Si ¼ giS1, where gi are coset representatives

in the coset resolution

G ¼ F 1 [ g2F 1 [ . . . [ gpF 1:
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The states Si are called the domain states. It is usually said that

the domain states Si are symmetrically equivalent. It is prob-

ably more precise to say that all relationships of the original

state S to any of the states Si are mutually geometrically

equivalent and hence physically equivalent. Indeed, any

element of giF 1 leaves the original state S invariant and the

change of the relationship between the state S and S1 to the

relationship between the state S and Sj is obtained by

applying an element of gjF1 to both states. The effect of this

operation is the rotation and, in full structural considerations,

also the possible space shift of the situation in physical space.

The state of the crystal at the transition usually does not

change to any particular state Si. The crystal splits instead into

regions, called domains, and the state in each of the domains is

one of the domain states. In addition, if the transition is

ferroelastic, the domain states coincide with those predicted by

coset resolution only in the vicinity of the transitions point (so-

called parent clamping approximation). Ferroelastic phase

transitions play a special role in the theory of domains for the

following reason: the domain states are eventually realized in

the individual domains. The structures of a crystal, which

correspond to various domain states, are identical up to their

orientation and location in the space. Domains are therefore

regions of physical space occupied by such states and there

exist interfaces (boundaries) between these regions. Group

theory predicts the equivalence of the number of domain

states equal to the index [G : F 1] of the low symmetry to the

parent symmetry. In reality, only two domains can meet at an

interface of a certain orientation and location. From group-

theoretical analysis, we may predict possible mutual orienta-

tions and locations of pairs of respective domain states and

continue the analysis for any orientation and location of an
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Table 3
Examples of the fine structure of typical orbits.

Symmetry descent: D4hz + D2h

Exomorphic type: 1. C2 + C1

D4hz D2h 4zD2h

D2h xþ3 �xþ3

Symmetry descent: D4hz + C4z

Exomorphic type: 5. D2 + C1

D4hz C4z iC4z 2xC4z mxC4z

C4hz xþ2 xþ2 �xþ2 �xþ2
D4z x�1 �x�1 x�1 �x�1
C4vz x�2 �x�2 �x�2 x�2

Symmetry descent: D4hz + ðC2hx;C2hyÞ

Exomorphic type: 7b. D4z + ðC2x;C2yÞ

First normalizer ND4hz
ðC2hxÞ = ND4hz

ðC2hyÞ = D2h = normal subgroup
D4hz D2h 4zD2h

C2hx 2zC2hx 4zC2hx 4�1
z C2hx

C2hx C2hy

D2h xþ3 xþ3 �xþ3 �xþ3
C2hi ðxþ1 ; 0Þ ð�xþ1 ; 0Þ ð0; xþ1 Þ ð0;�xþ1 Þ

Symmetry descent: D4hz + Csz

Exomorphic type: 7a. D4z + C1

D4hz Csz 4zCsz 2zCsz 4�1
z Csz 2xCsz 2xyCsz 2yCsz 2x�yyCsz

C4hz xþ2 xþ2 xþ2 xþ2 �xþ2 �xþ2 �xþ2 �xþ2
D2h xþ3 �xþ3 xþ3 �xþ3 xþ3 �xþ3 xþ3 �xþ3bDD2hz xþ4 �xþ4 xþ4 �xþ4 �xþ4 xþ4 �xþ4 xþ4
Csz ðx�1 ; y�1 Þ ð�y�1 ; x�1 Þ ð�x�1 ;�y�1 Þ ðy�1 ;�x�1 Þ ðx�1 ;�y�1 Þ ðy�1 ; x�1 Þ ð�x�1 ; y�1 Þ ð�y�1 ;�x�1 Þ

Symmetry descent: D4hz + ðC2x;C2yÞ

Exomorphic type: 14b. itself
First normalizer ND4hz

ðC2xÞ = ND4hz
ðC2yÞ = D2h = normal subgroup

D4hz D2h 4zD2h

C2x iC2x 2zC2x mzC2x 4zC2x
�44zC2x 4�1

z C2x
�44
�1

z C2x

C2x C2y

D2h xþ3 xþ3 xþ3 xþ3 �xþ3 �xþ3 �xþ3 �xþ3
D4 x�1 �x�1 x�1 �x�1 x�1 �x�1 x�1 �x�1
D2dz x�3 �x�3 x�3 �x�3 �x�3 x�3 �x�3 x�3
C2hi ðxþ1 ; 0Þ ðxþ1 ; 0Þ ð�xþ1 ; 0Þ ð�xþ1 ; 0Þ ð0; xþ1 Þ ð0; xþ1 Þ ð0;�xþ1 Þ ð0;�xþ1 Þ
C2vi ðx�1 ; 0Þ ð�x�1 ; 0Þ ð�x�1 ; 0Þ ðx�1 ; 0Þ ð0; x�1 Þ ð0;�x�1 Þ ð0;�x�1 Þ ð0; x�1 Þ



interface. However, in the case of ferroelastic phase transi-

tions, there exist physical conditions on the existence of

interfaces – the boundary between two domains should be

stress free. As a result, the mutual orientation and location of

domain states coincides with that predicted by group theory

only when spontaneous distortions of the structure are small.

In the examples D4hz + D2h, D4hz + ðC2hx;C2hyÞ and

D4hz + Csz, we can observe that each domain state corre-

sponds to a distinct vector in one of the typical spaces. There

are the variables or vectors xþ3 , ðxþ1 ; 0Þ and ðx�1 ; y�1 Þ in the first

domain state, which change from one domain to the other, so

that all domains are characterized by distinct vectors. In the

case of descents D4hz + D2h, D4hz + Csz, we need to take

vectors of two ireps to distinguish all domain states.

5. Labelling of covariants and conversion equations

Substituting actual tensor components for typical variables in

the tables of the fine structure of typical orbits, we obtain as

complete a description of all domain states in terms of their

tensor properties as the tables of tensorial covariants provide.

If this turns out not to be sufficient, we can always extend the

tables of tensorial covariants to higher ranks.

However, if we inspect tables of covariants or if we try an

actual substitution, we shall find that typical variables are

substituted by covariant tensor components which are

frequently linear combinations of Cartesian components. It is

therefore necessary to convert this information into the

Cartesian frame of reference. The situation is analogous to the

consideration of invariant tensor forms. Invariants are

frequently linear combinations of Cartesian components and,

as a result, we obtain an invariant tensor in the Cartesian

frame which has more allowed components than the number

of independent invariants. In this case, there appear relations

between the Cartesian components which reduce the number

of independent components to the correct one.

The effect in ferroic transitions is that Cartesian compo-

nents are not necessarily the principal parameters and there

appear increments to these components which are again not

independent. To resolve this problem, we introduce the

method of labelling the covariants and of conversion equa-

tions (Kopský, 2001a,b,c), which was later used by Janovec &

Kopský (2003).

The method is illustrated in Table 4 for the tetragonal group

D4z. Table 4(a) defines the labels of covariants as linear

combinations of Cartesian components and Table 4(b) gives

the Cartesian components expressed as linear combinations of

covariant components. The principles of notation are

explained below. It is our opinion that it would be useful to

standardize the labels of covariants.

To each group there are assigned two tables. The first table,

called ‘Labelling of covariants’ assigns numerical labels to

linearly independent Dð�ÞðGÞ covariants in the case when more

than one covariant of a given tensor to this irep exists. We shall

illustrate it for the case of tensor A. One-dimensional

covariants, including invariants, are denoted by sans-serif

letter A with two indices, the first of which is the numerical

label of an irep, the second is the number of the covariant. If

only one covariant of the type exists, we drop the second

index. Thus, A1 means an invariant, A3 means a �3ðGÞ

covariant but A1;1, A1;2, A1;3 mean the first, second and third

invariants and A3;1, A3;2 mean the first and second �3ðGÞ

covariants. The two-dimensional Dð1ÞðGÞ covariants are

expressed as A
ð1Þ
1 ¼ ðA1x;1;A1y;1Þ, A

ð1Þ
2 ¼ ðA1x;2;A1y;2Þ,

A
ð1Þ
3 ¼ ðA1x;3;A1y;3Þ and so on if more than three linearly

independent Dð1ÞðGÞ covariants exist while Að1Þ ¼ ðA1x;A1yÞ

signals that there is no other Dð1ÞðGÞ covariant.

The second table bears the title ‘Conversion equations’ and

contains Cartesian tensor components expressed in terms of

the covariant components. If all non-invariant components are

set to zero, we get the tensor form, invariant under the group

G. By comparison with the main tables, we can see which

covariant components onset at each transition from the parent

group G. Thus these components can be described as the

tensor parameters of the transition. Conversion equations are

a convenient platform to launch the detailed investigation of

domain pairs and domain walls. The results of such an inves-

tigation in a form which an experimentalist can directly use are

in preparation as a continuation of this work.

Example: Using the conversion Table 4 for the group

D4z � 4z2x2xy and Table 1 of stability spaces and epikernels,

find how the Cartesian components of the piezoelectric tensor

d change as we descend with the symmetry (on various paths)

to trivial symmetry C1 � 1.

First we take into account that tensor d transforms in this

group in the same way as tensor A for which labelling of

covariants and conversion equations are listed. We just replace

the characters A and A by d and d.

In the group D4z � 4z2x2xy, we find that only two compo-

nents are nonvanishing: d14 ¼ �d25 ¼
1
2 d1 and equal to one

invariant with opposite signs.

In the group C4z � 4z, variable x2 onsets to which there

correspond Cartesian components d31 ¼ d32 ¼
1
2 d2;1,

d15 ¼ d24 ¼
1
2 d2;2 and d33 ¼ d2;3.

To the group D2 � 2x2y2z there corresponds variable x3

which indicates onset of the component d36 ¼ d3;2. The

covariant d3;1 contributes to already allowed components by

�d14 ¼ �d25 ¼
1
2 d3;1. Owing to this increment, the compo-

nents d14 and d25 are now independent.

To the group bDD2 � 2x�yy2xy2z there corresponds variable x4

which contributes to Cartesian components by

d31 ¼ �d32 ¼
1
2 d4;1 and d15 ¼ �d24 ¼

1
2 d4;2. These Cartesian

components are not independent because of the orientation of

this group.

All three variables x2, x3, x4 are invariant under the group

C2z and hence all components d14, d25, d31, d32, d15 and d24 are

independent and can be expressed through two consecutive

increments as seen from conversion equations.

In the group C2x � 2x, we obtain again the increments

�d14 ¼ �d25 ¼
1
2 d3;1 to components already allowed in the

parent group. In addition, the first component ðx1; 0Þ is now

allowed, to which there corresponds an onset of tensor

components: d11 ¼ d1x;1, d13 ¼ d1x;3, d35 ¼ d1x;5, d12 ¼ d1x;2

and d26 ¼ d1x;4.
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In the group C2y � 2y, we obtain again the increments

�d14 ¼ �d25 ¼
1
2 d3;1 to components already allowed in the

parent group. In addition, the second component ð0; x1Þ is now

allowed, to which there corresponds an onset of tensor

components: d22 ¼ d1y;1, d23 ¼ d1y;3, d34 ¼ d1y;5, d21 ¼ d1y;2

and d16 ¼ d1y;4. The magnitude of these components must be

the same as that of corresponding components in the group

C2x � 2x, because the state is actually another domain state of

the same descent.

In the groups C2xy � 2xy and C2x�yy � 2x�yy, we obtain Cartesian

components d31 ¼ �d32 ¼
1
2 d4;1 and d15 ¼ �d24 ¼

1
2 d4;2.

Vector ðx1; x1Þ indicates that in the group C2xy � 2xy we obtain

d11 ¼ d22, d13 ¼ d23, d35 ¼ d34, d12 ¼ d21 and d26 ¼ d16, while,

in the other group C2x�yy � 2x�yy, d11 ¼ �d22, d13 ¼ �d23,

d35 ¼ �d34, d12 ¼ �d21 and d26 ¼ �d16.

We have to check now that all these components taken

together are all components of tensor d as it should be in the

trivial group C1 � 1.

Conversion equations are not necessary for parent groups

up to mxmymz �D2h because Cartesian components are

themselves relative invariants (this is, however, due to the

choice of group orientations). Labelling of covariants and

solution of conversion equations for other tensors and for

other groups can be performed by rewriting results for groups

of proper rotations with the use of Opechowski’s magic rela-

tions (Kopský, 2006a).
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Table 4
Labelling of covariants and conversion equations: Group 4z2x2xy – (D4z).

(a) Labelling of covariants

u1;1 ¼ u1 þ u2 u3 ¼ u1 � u2 u4 ¼ u6

u1;2 ¼ u3 uð1Þ ¼ ðu1x; u1yÞ ¼ ðu4;�u5Þ

A1 ¼ A14 � A25 A2;1 ¼ A31 þ A32 A3;1 ¼ A14 þ A25 A4;1 ¼ A31 � A32

A2;2 ¼ A15 þ A24 A3;2 ¼ A36 A4;2 ¼ A15 � A24

A2;3 ¼ A33

A
ð1Þ
1 ¼ ðA1x;1;A1y;1Þ ¼ ðA11;A22Þ A

ð1Þ
3 ¼ ðA1x;3;A1y;3Þ ¼ ðA13;A23Þ

A
ð1Þ
2 ¼ ðA1x;2;A1y;2Þ ¼ ðA12;A21Þ A

ð1Þ
4 ¼ ðA1x;4;A1y;4Þ ¼ ðA26;A16Þ

A
ð1Þ
5 ¼ ðA1x;5;A1y;5Þ ¼ ðA35;A34Þ

s1;1 ¼ s11 þ s22 s2;1 ¼ s16 � s26 s3;1 ¼ s11 � s22 s4;1 ¼ s16 þ s26

s1;2 ¼ s13 þ s23 s3;2 ¼ s13 � s23 s4;2 ¼ s36

s1;3 ¼ s44 þ s55 s3;3 ¼ s44 � s55 s4;3 ¼ s45

s1;4 ¼ s12

s1;5 ¼ s33 s
ð1Þ
1 ¼ ðs1x;1; s1y;1Þ ¼ ðs14;�s25Þ

s1;6 ¼ s66 s
ð1Þ
2 ¼ ðs1x;2; s1y;2Þ ¼ ðs24;�s15Þ

s
ð1Þ
3 ¼ ðs1x;3; s1y;3Þ ¼ ðs34;�s35Þ

sð1Þ4 ¼ ðs1x;4; s1y;4Þ ¼ ðs56;�s46Þ

q1;1 ¼ q13 þ q23 q2;1 ¼ q16 � q26 q3;1 ¼ q13 � q23 q4;1 ¼ q16 þ q26

q2;2 ¼ q45 q3;2 ¼ q12 q4;2 ¼ q36

q
ð1Þ
1 ¼ ðq1x;1; q1y;1Þ ¼ ðq14;�q25Þ

q
ð1Þ
2 ¼ ðq1x;2; q1y;2Þ ¼ ðq24;�q15Þ

qð1Þ3 ¼ ðq1x;3; q1y;3Þ ¼ ðq34;�q35Þ

qð1Þ4 ¼ ðq1x;4; q1y;4Þ ¼ ðq56;�q46Þ

(b) Conversion equations

u1 ¼
1
2 ðu1;1 þ u3Þ u2 ¼

1
2 ðu1;1 � u3Þ u3 ¼ u1;2

u4 ¼ u1x u5 ¼ �u1y u6 ¼ u4

A11 ¼ A1x;1 A22 ¼ A1y;1 A12 ¼ A1x;2 A21 ¼ A1y;2

A13 ¼ A1x;3 A23 ¼ A1y;3 A26 ¼ A1x;4 A16 ¼ A1y;4

A35 ¼ A1x;5 A34 ¼ A1y;5 A33 ¼ A2;3 A36 ¼ A3;2

A14 ¼
1
2 ðA1 þ A3;1Þ A25 ¼

1
2 ð�A1 þ A3;1Þ

A31 ¼
1
2 ðA2;1 þ A4;1Þ A32 ¼

1
2 ðA2;1 � A4;1Þ

A15 ¼
1
2 ðA2;2 þ A4;2Þ A24 ¼

1
2 ðA2;2 � A4;2Þ

s11 ¼
1
2 ðs1;1 þ s3;1Þ s22 ¼

1
2 ðs1;1 � s3;1Þ s13 ¼

1
2 ðs1;2 þ s3;2Þ s23 ¼

1
2 ðs1;2 � s3;2Þ

s44 ¼
1
2 ðs1;3 þ s3;3Þ s55 ¼

1
2 ðs1;3 � s3;3Þ s16 ¼

1
2 ðs2;1 þ s4;1Þ s26 ¼

1
2 ð�s2;1 þ s4;1Þ

s12 ¼ s1;4 s33 ¼ s1;5 s66 ¼ s1;6 s36 ¼ s4;2 s45 ¼ s4;3

s14 ¼ s1x;1 s25 ¼ �s1y;1 s24 ¼ s1x;2 s15 ¼ �s1y;2

s34 ¼ s1x;3 s35 ¼ �s1y;3 s56 ¼ s1x;4 s46 ¼ �s1y;4

q13 ¼
1
2 ðq1;1 þ q3;1Þ q23 ¼

1
2 ðq1;1 � q3;1Þ q16 ¼

1
2 ðq2;1 þ q4;1Þ q26 ¼

1
2 ð�q2;1 þ q4;1Þ

q45 ¼ q2;2 q12 ¼ q3;2 q36 ¼ q4;2

q14 ¼ q1x;1 q25 ¼ �q1y;1 q24 ¼ q1x;2 q15 ¼ �q1y;2

q34 ¼ q1x;3 q35 ¼ �q1y;3 q56 ¼ q1x;4 q46 ¼ �q1y;4



6. The twinning group and completely transposable
pairs of domain states

The original tables of the fine structure of domain states

(Kopský, 1982a) have now been revised because some of the

original numerical labels of ireps were changed to a more

systematic labelling. With their use and with the use of

conversion equations, we are able to describe all domain states

by desirable tensors. This might be useful, for example, in

averaging domain states of engineered multidomain structures

with certain weights as well as in the determination of tensor

distinction of domain states.

In consideration of domain walls or twin boundaries, we

consider only pairs of domain states because only two domains

meet at the wall. Here we are interested in the tensor

distinction of pairs of domain states. Domain walls, pairs of

domain states and their tensor distinction were extensively

studied by Janovec and others (Janovec et al., 1992, 1993, 1994,

1995; Fuksa & Janovec, 1995; Fuksa, 1997). In this connection,

the concept of the embracing group or fundamental group of

dichromatic pattern (Shubnikov & Kopcik, 1974; Pond &

Vlachavas, 1983; Wadhawan, 2000) introduced originally as a

bicrystallographic construction has been given the better name

of the twinning group (cf. Litvin & Kopský, 1997, on magnetic

twins; Janovec, Hahn & Klapper, 2003; Janovec & Přı́vratská,

2003).

The twinning group: To study the distinction of the tensorial

properties of a pair of domain states ðS1;S2Þ, it is frequently

not necessary to know the symmetry descent G + F or the

whole set of domain states. It is sufficient to find an element g

which sends the state S1 into the state S2 ¼ gS1. The twinning

group T ¼ T12 ¼ TðS1;S2Þ ¼ ðF1; gÞ is defined as the group

generated by the symmetry of the first state and an element g

which sends it to the second state.

The next two Tables 5 and 6 refer to parent groups

D4z � 4z2x2xy and Oh �m�33m. Separated by blank lines are

symmetry descents to subgroups of these two groups (in the

second case only the descents of low index are given). Under

each of the subgroups are listed representatives of cosets in

the coset resolution of the parent group. The elements of each

coset send the first domain state to another distinct domain

state. The twinning group is given in the right column.

We shall consider here only the case of so-called completely

transposable pairs of domain states which have the property

that from S2 ¼ g?S1 follows S1 ¼ g?S2. In this case, the two

states have the same symmetry which is a halving subgroup of

the twinning group T. This leads to a notation in the style of

magnetic point groups: some generators in the symbol of the

twinning group are starred in the Hermann–Mauguin symbols,

in Schoenflies symbols the star is attached to the symbol of T

and the subgroup F1 is specified in parentheses. All elements

of the coset g?F1 transpose the domain states S1 and S2. The

tensor properties of the two states are the same for those
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Table 5
Twinning groups for pair of domain states in symmetry descents from the
parent group D4z � 4z2x2xy.

Parent group Twinning group

4z (C4z)
2x 4z2?x2?xy [D?

4zðC4zÞ]

2x2y2z (D2)
2x�yy 4?z2x2?xy [D?

4zðD2Þ]

2x�yy2xy2z (bDD2z)
2x 4?z2?x2xy [D?

4zð
bDD2zÞ]

2z (C2z)
2x 2?x2?y2z [D?

2ðC2zÞ]
2xy 2?x�yy2?xy2z [bDD?

2ðC2zÞ]
4z 4?z [C?

4zðC2zÞ]

2x (C2x)
2z 2x2?y2?z [D?

2ðC2xÞ]
2xy 4z2x2xy (D4z)
2x�yy

2xy (C2xy)
2z 2?x�yy2xy2?z [bDD?

2zðC2xyÞ]
2x 4z2x2xy (D4z)
2y

1 (C1)
2z 2?z [C?

2zðC1Þ]
2x 2?x [C?

2xðC1Þ]
2y 2?y [C?

2yðC1Þ]
2xy 2?xy [C?

2xyðC1Þ]
2x�yy 2?x�yy [C?

2x�yyðC1Þ]
4z 4z (C4z)
43

z

Table 6
Twinning groups for pair of domain states in symmetry descents of low
index from the parent group Oh �m�33m.

Parent group Twinning group

m�33 (Th)
mxy m�33m? [O?

hðThÞ]

432 (O)
i m? �33

?
m? [O?

hðOÞ]

�443m (Td)
i m? �33

?
m [O?

hðTdÞ]

23 (T)
i m? �33

?
[T?

hðTÞ]
2xy 4?32 [O?ðTÞ]
mxy

�44
?
3m? [T?

dðTÞ]

4z=mzmxmxy (D4hz)
myz m�33m (Oh)
mzx

mxmymz (D2h)
mxy 4?z=mzmxm?

xy [D?
4hzðD2hÞ]

myz 4?x=mxmym?
yz [D?

4hxðD2hÞ]
mzx 4?y=mymzm?

zx [D?
4hyðD2hÞ]

3p m�33 (Th)
32

p

4z=mz (C4hz)
mx 4z=mzm?

xm?
xy [D?

4hzðC4hzÞ]
mzx m�33m (Oh)
mz�xx

myz

myz



tensor components that are invariant under the group T, they

differ in sign for those components that correspond to

symmetry descent T + F1. This descent may not be the actual

symmetry descent G + F1 at which the two domain states arise

and tensor components by which the states differ may belong

to an irep of G which is not one-dimensional. On the other

hand, this means that an experiment that leads to such a pair

of states does not necessarily imply the actual symmetry

descent. If G 6¼ T, which implies T � G, this may need the

knowledge of a wider set of domain states.

Although the concept of the twinning group is useful for

classification purposes and in cases of twinning, it is not quite

necessary in the determination of the tensor distinction of

domain states where tables of fine structure of domain states

in conjunction with the ‘Main Tables’ of tensor parameters of

the first domain state in ferroic symmetry descents [Kopský

(2001a), and GI ?KoBo-1 (Kopský & Boček (2003)] provide

more complete information. Thus in Table 3.4.3.4. of section

3.4 of International Tables for Crystallography (2003, Vol. D,

pp. 478–479) are given only the numbers of components of

tensors " (enantiomorphism), P (polarization), g (gyrotropy),

d (piezoelectricity), A (electrogyrotropy), s (elastic stiffness)

and Q (elastooptics) in which pairs of domain states of

completely transposable domain pairs differ. In an example

below, we show the difference between the full analysis and a

shortcut provided by the twinning group.

Example: We consider the transition Oh + fC4hz;C4hx;C4hyg

or, in Hermann–Mauguin notation,

m�33m + f4z=mz; 4x=mx; 4y=myg. The principal parameters for

the first domain state S1 with symmetry C4hz ð4z=mzÞ can be

found on page 381 of the paper by Kopský (2001a) as

covariant tensor components corresponding to variable zþ1 .

These are A33, A32 þ A31, A24 þ A15, s26 � s16, Q26 �Q16,

Q62 �Q61, Q45 �Q54 ¼ q45. Secondary tensor parameters

correspond to typical vector ðxþ3 ; 0Þ. Twinning operation mx

sends the vector ð0; 0; zþ1 Þ to ð0; 0;�zþ1 Þ and leaves the vector

ðxþ3 ; 0Þ intact. The pair of domain states ðS1;S2Þ, where

S2 ¼ mxS1, is completely transposable and the corresponding

twinning group is 4z=mzm?
xm?

xy ½D
?
4hzðC4hz�. On page 165 of the

same work, we find tensor parameters in which the two

domain states differ as A33, A32 þ A31, A24 þ A15, s26 � s16,

Q26 �Q16, Q62 �Q61, Q45 �Q54 ¼ q45, i.e. we get the same

result as before without the use of the twinning group. If we

look up the subduction tables, which were given together with

fine structures of domain states, we find that the variable zþ1 in

the group Oh �m�33m subduces the variable xþ2 which is to be

replaced by these tensor parameters in the group

C4hz � 4z=mz.

With the use of conversion equations, we find that the

transition is accompanied by an onset of Cartesian compo-

nents A33, A32 ¼ �A31, A24 ¼ �A15, s26 ¼ s16, Q26 ¼ Q16,

Q26 ¼ Q16 and q45 which change their sign if we go from the

domain state S1 to the state S2. Thus we can obtain explicitly

those tensor parameters in which the domain states differ as

well with the use of the twinning group as without it. On the

other hand, the table on page 381 of the cited work provides as

easily the information about the other two pairs of domain

states which correspond to typical variables xþ1 and yþ1 and to

symmetries C4hx � 4x=mx and C4hy � 4y=my. The first pair is

distinguished by tensor components A11, A13 ¼ �A12,

A35 ¼ �A26, s34 ¼ s24, Q34 ¼ Q24, Q43 ¼ Q42 and q56, the

second by components A22, A21 ¼ �A23, A16 ¼ �A34,

s15 ¼ s35, Q15 ¼ Q35, Q51 ¼ Q53 and q64. Thus we obtain a

complete description of the distinction of the six domains with

covariant as well as Cartesian components of tensors A, s and

Q (q is the antisymmetric part of Q).

In addition, we can also obtain the information about

the secondary parameters which correspond to variables,

transforming by the irep Dð3þÞðOhÞ, where the domain states

are characterized by tensor parameters corresponding to

states ðxþ3 ; 0Þ, ð�axþ3 � byþ3 ; bxþ3 � ayþ3 Þ and

ð�axþ3 þ byþ3 ;�bxþ3 � ayþ3 Þ. These states correspond to

symmetries D4hz � 4z=mzmxmxy, D4hx � 4x=mxmymyz and

D4hy � 4y=mymzmzx. With the use of conversion equations, we

can find the distinction of pairs of domain states that belong to

different choices of these symmetries in terms of those

components of tensors u, A, s and Q which appear in the block,

corresponding to the first state with the symmetry

D4hz � 4z=mzmxmxy.

Thus the twinning group is only of auxiliary value in cases

when we need to consider only a certain pair of domain states.

Complete description of domain states in terms of tensors up

to fourth rank may be obtained from the ‘Main tables’

[Kopský (2001a) or GI ?KoBo-1 (Kopský & Boček, 2003)]

and from tables of the fine structure of domain states. An

experienced user can even bypass the use of the latter tables

because the transformations of the typical variables do not go

beyond the action of symmetry operations on two- or three-

dimensional spaces. The essential points of an analysis of

tensor properties of domain states are the decomposition of

the tensor into tensorial covariants and the conversion equa-

tions.

7. Discussion

It’s a long way to Tipperrary! Indeed, let us recall the steps of

this version of tensor calculus and its outcome. We begin with

meticulous specification of magnetic point groups and their

isomorphisms. Precise specification of typical variables is a

central point of systemization while the Clebsch–Gordan

products represent the background for calculation of tensorial

covariants or rather of the decomposition of tensors into these

covariants. The choice of isomorphisms and of symbols for

typical variables together with Opechowski’s magic relations

maximally simplify this task and cut down the tedious part of

calculations to a minimum.

The knowledge of tensorial covariants is itself a starting

point for the investigation of ferroic phase transitions, espe-

cially for the consideration of tensor properties of individual

domain states which is necessary in modelling the properties

of multidomain systems. The typical variables also prove to be

useful in this application. With their use in tables of stability

spaces and epikernels, we establish the quantities that char-

acterize the first domain and in tables of fine structure of
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domain states we find complete information about these

states. Up to orthorhombic parent groups, we do not need such

a sophisticated scheme because the ireps are one-dimensional

and tensorial covariants (relative invariants in these cases)

coincide with Cartesian components. Starting with tetragonal

parent groups, we meet, however, the difference between

transition parameters and Cartesian tensor components.

There are two options for resolving this discrepancy. We may

obtain the results in terms of Cartesian tensor components

using the procedure of labelling the covariants with subse-

quent transformation of results to Cartesian system through

conversion equations. It would be, however, also possible to

express the experimental results directly in terms of covariant

components.

One of the problems of the practical use not only of this

theory but also of the tables by experimentalists is the

necessity of learning a certain minimal pensum of group

theory such as given in this work. Tables are of no use if one

does not know what information they contain. Let me,

however, give an example that shows that learning at least the

basic principles is worth the time. A recognized experi-

mentalist asked me recently whether it is in order if he uses the

relation si0 j0k0l0 ¼ cii0cjj0ckk0cll0sijkl where cii0 are the matrices of

vector transformation to calculate the changes of tensor s from

one domain state to another. Like the method of projection

operators to find tensorial bases, this is theoretically correct.

But in practice? With 21 components of the tensor s and up to

48 domain states? Would it not be more productive to spend

the time necessary for such error-prone calculations by

learning the basic principles of the theory of irreducible

representations? Indeed, the principle behind our system is

the same as used in spectroscopy. Using covariant tensor

components we split the space of dimension 21 to subspaces

whose maximal dimension is 3.

All information necessary to find tensor characteristics of

individual domain states up to tensors of fourth rank and for

the ordinary point groups is contained in the monograph by

Kopský (2001a) and in the software GI ?KoBo-1 (Kopský &

Boček, 2003). Explicit tabulation of analogous results for

magnetic point groups and magnetic properties in printed

form is out of the question as well as the tabulation of the final

results because of the volume required. On the other hand, the

volume of basic tables from which desired information can be

derived is relatively small and algorithms for its derivation

rather transparent. We are preparing an extension of the

software GI ?KoBo-1 (Kopský & Boček, 2003) which will

provide explicit results for magnetic point groups and

magnetic properties with the hope that it will be helpful to

experimentalists.
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